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HYDRODYNAMIC MODES, DENSITY 
FLUCTUATIONS AND TRANSPORT 

COEFFICIENTS IN LIQUID METALS 

J. ASCOUGH and N. H. MARCH 

Theorerical Chemisiry Deparrmenr, Universiry of Oxford, 
5 South Parks Road, Oxford, England. 

(Received 16 June 198%) 

From the theory of long-time tails in the velocity autocorrelation function, a definition of hydrodynamic 
modes is proposed in the frequency spectrum g(u) = w 2  limk-o S J k ,  w)/k2 where S ,  is the self function. 
accessible by incoherent neutron scattering. Consequences for the relation between self-diffusion coefficient 
D and shear viscosity are presented. 
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That the self-diffusion coefficient D and shear viscosity q are intimately related in 
dense liquids has been known for a long time. A recent contribution in this area, due 
to Zwanzig,' yields the relation 

(5)- l i 3  = 0.0658 2 + ~ = C' ( 2 
where p is the atomic number density while q, is the longitudinal viscosity. Unfortu- 
nately the actual value of C' defined in Eq. ( 1 )  clearly depends on the ratio of q to ql ,  
which is often not known quantitatively. In spite of this, Zwanzig pointed out that C' 
as defined above can vary only between 0.13 and 0.18. 

One of us2 drew attention to the fact that in liquid metals at their melting 
temperature T, one has the approximate relations: 

DM*"p"3/TA/2 = constant (2) 

q/TAl2 M 1 1 2 p 2 ! 3  = constant. (3) 

Brown and March3 used arguments based on Green-Kubo formulae to obtain Eqs 
(2) and (3). They noted that Eq. (3), which was first given by Andrade4 using a kinetic 
argument which would not find ready acceptance today,5 was of considerably higher 
quality than Eq. (2). 

We have therefore examined again the Green-Kubo route to transport, adding to 
the argument of Brown and March the knowledge that has come from the long-time 

and 
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2 J .  ASCOUGH AND N. H. MARCH 

tails of the velocity autocorrelation function. This yields the low-frequency expansion 
of the frequency spectrum g(w), defined from the self function S,(k, w )  by 

as6 

( 5 )  
D 

g(O) = - - Aw”’ + O(W) 
71 

where 

- 312 k ,  T 
E. A = ( ~ I L ) ” ~  1 [ 4 n ( D  + &)] 

3P 

Since the coefficients g(0) and A involve quantities entering the hydrodynamic 
equations, we shall now make a division of g(w) into two parts: 

d o )  = ghyd(O) + gdf(W) (7) 

where ghyd is evidently the contribution of hydrodynamic modes to the total frequency 
spectrum, while the remaining contribution, denoted by gdfr is labelled to indicate that 
it arises from the density fluctuations. In simple liquid metals, these are known to 
oscillate more or less harmonically, near the melting temperature T,, leading to 
y = cp/c,  near to 1 and c, > 3R,  with R the gas constant. 

In the absence of a more fundamental approach, we here adopt the definition 

D 
ghyd(w) = - - Au”’, 

IL 
w I w, 

= o  0 > w, 

where wc is chosen to make ghyd(w) continuous at w = 0,: 
2 -.=(Z) (9) 

The main point to be stressed is that the fraction f of the total modes in the 
hydrodynamic part of the spectrum is presumably a small fraction of the total3: 

where M denotes throughout the ionic mass. Since, with the definition (8): 
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TRANSPORT COEFFICIENTS IN METALS 

where the second step in Eq. (1 1) follows from Eq. (9), we readily find 

2M D3 
k, T 3n3A2 

f=-- 

for the fraction of hydrodynamic modes. Hence we can write 
1/3 k T 113 &=(?) (+) P3 

Using Eq. (6) ,  this is readily rewritten as 

Equations (2) and (3) suggest the use of the reduced quantities 

and 

From Eq. (14) we then obtain 

which demonstrates that 

3 

(12) 

Utilizing now the Zwanzig result ( 1 )  to remove the dh term from Eq. (17), we find 
dh = C'. Table 1 shows empirical values of d ,  h and C' for the liquid alkali metals and 
for mercury at the melting temperature T,. Though the same situation may, of course, 
not necessarily obtain at other very different thermodynamic states, i t  can be seen 

Table I Empirical values of d and h defined 
in Eqs (15) and (16) respectively, at the melt- 
ing temperature T, for the alkali metals and 
for mercury. 

Element d ,  x lo2 h,  d,h,  = C:, 

Li 2.9 5.6 0.16 
Na 2.1 5.6 0.15 
K 3.3 5.6 0.18 
R b  3.4 4.9 0.17 
c s  3.2 5.4 0.17 
Hg 4.8 5.0 0.24 
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4 J. ASCOUGH AND N. H. MARCH 

from Table 1 that, at  the melting temperature T,, d2 c d h ,  and hence Eq. (17) shows 
that dh determinesf in essence. Since dh = C', this points to the fact that fdepends on 
q/ql for this important thermodynamic state of liquid metals. 

In summary, the Zwanzig relation (l) ,  when combined with an argument enumerat- 
ing the number of hydrodynamic modes as a fractionfof the total number of modes in 
the frequency spectrum g ( o )  leads to 

Table 1 shows that, at the melting temperature of liquid metals, d2<<C' and this 
suggests at this thermodynamic state that f is primarily determined by the ratio q/q , .  
Clearly, i t  would be of interest to have data over a wide range of thermodynamic 
states to study further Eq. (17). 
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APPENDIX AN ALTERNATIVE MODEL FOR HYDRODYNAMIC MODES 

In writing Eq. (7), one should always choose ghyd so that it is everywhere less than 
g(o) .  Should any model violate that, then there is no assurance that f < 1, and the 
utility of the present approach is not clear under such circumstances. Therefore, in this 
Appendix, we propose an alternative model for the hydrodynamic modes. This is 
motivated again by Eq. ( 5 ) :  and we shall write 

g ( o )  = g(0) exp - ~ o1I2 ( 9;) ) 
which evidently expands to reproduce Eq. ( 5 )  at small o. 

We have again 

jOrng(w)dw = g(0) exp( - clsl2sds: s = 
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TRANSPORT COEFFICIENTS IN METALS 5 

where CL = A/g(O) = nA/D. Using the identity 

x" exp( - cx) = n! c - ( "+  l )  

we find the results of the main text are recovered, with different, calculable numerical 
constants. We shall not therefore pursue the details. 
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